

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 8969-8971

Tetrahedron Letters

Rhodium-catalyzed carbonyl allylations by allylic alcohols with tin(II) chloride

Yoshiro Masuyama,* Yusuke Kaneko and Yasuhiko Kurusu

Department of Chemistry, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan

Received 7 September 2004; revised 7 October 2004; accepted 12 October 2004 Available online 22 October 2004

Abstract—Rhodium complexes such as $[RhCl(cod)]_2$, $[Rh(cod)_2]BF_4$, and $[Rh(cod)(CH_3CN)_2]BF_4$ function as catalysts for carbonyl allylations by allylic alcohols with 1 equimolar amount of tin(II) chloride to each allylic alcohol and aldehyde in THF at 50 °C to produce the corresponding homoallylic alcohols.

© 2004 Elsevier Ltd. All rights reserved.

Palladium-catalyzed carbonyl allylation by allylic alcohols is a versatile allylating method in terms of (1) operation: allylic alcohols are stable to air, water, and light; and (2) synthetic efficiency: usual starting materials such as allylic halides, esters, and ethers in carbonyl allylations are prepared from allylic alcohols.¹ The palladium-catalyzed carbonyl allylation, which occurs via umpolung (transmetallation) of π -allylpalladium complexes,¹ needs over two equimolar amounts of reducing agents such as tin(II) chloride,² triethylborane,³ and indium(I) iodide,⁴ to allylic alcohols and/or carbonyl compounds. Only complexes of group X elements have been found to catalyze the carbonyl allylation via this kind of umpolung. π -Allylrhodiums, derived from rhodium(I) complexes with allylic halides, tosylates, and carbonates, have been applied to reactions with nucleophiles.⁵ We here report on a catalytic cycle of rhodium(I) for carbonyl allylation by allylic alcohols with 1 equimolar amount of tin(II) chloride to the allylic alcohols, of which actual allylating agents are probably not allyltin compounds but allylrhodium complexes, in contrast to palladium-catalyzed carbonyl allylation by allylic alcohols with tin(II) chloride.⁶

$$\begin{array}{c|c} & & & & \text{Rh cat.} \\ & & & \text{SnCl}_2 & & \text{OH} \\ \hline & & & & \text{THF-H}_2\text{O} \\ \hline & & & & \text{THF-H}_2\text{O} \\ \hline & & & & \text{S0 °C, 48 h} \\ \end{array} \begin{array}{c} & & & \text{OH} \\ \hline & &$$

Catalytic activity of rhodium complexes and stoichiometry of tin(II) chloride were investigated for the allylation of benzaldehyde (1 mmol) with 2-propenol (1, 1.5 mmol) in THF (3 mL) and H₂O (0.1 mL) in the presence of Rh cat. (0.02 mmol) at 50 °C for 48 h under a nitrogen atmosphere, which produced 1-phenyl-3buten-1-ol (2, R = Ph) (Eq. 1, Table 1). No allylation occurs without either Rh catalysts or tin(II) chloride. [RhCl(cod)]₂ exhibited a higher catalytic activity than $[Rh(cod)_2]BF_4$, $[Rh(cod)(CH_3CN)_2]BF_4$, or RhCl-(PPh₃)₃ (entries 1 and 3–5). The character of ligands such as PPh₃, (8 mol%, 84%), P(C₆F₅)₃ (8 mol%, 85%) and dppe (4mol%, 84%) to the conditions of entry 7 does not affect the allylation to afford 2 (R = Ph). The allylation without H₂O was slow (entry 2).⁷ THF (76%) is superior to other solvents such as acetonitrile (61%) and 1.3-dimethylimidazolidin-2-one (38%) under

Table 1. Rhodium-catalyzed allylation of benzaldehyde with 1

Entry	Rh cat.	SnCl ₂ (mmol)	2 (R = Ph), Yield ^a (%)
1	[RhCl(cod)]2	1.5	76 (95 ^b)
2 ^c	[RhCl(cod)] ₂	1.5	44
3	$[Rh(cod)_2]BF_4$	1.5	43
4	[Rh(cod)(MeCN) ₂]BF ₄	1.5	30
5	RhCl(PPh ₃) ₃	1.5	14
6 ^d	[RhCl(cod)] ₂	1.0	70
7^{d}	[RhCl(cod)]2	1.2	90

^a Isolated yields.⁹

^b After stirring for 72h.

^c The allylation was carried out without H₂O.

^d The reaction was carried out with 1 (1 mmol) in THF (1 mL) for 11 h.

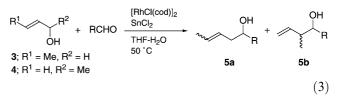
Keywords: Nucleophilic addition; Carbonyl allylation; π -Allylrhodium; Tin(II) chloride.

^{*} Corresponding author. Tel.: +81 3 3238 3453; fax: +81 3 3238 3361; e-mail: y-masuya@sophia.ac.jp

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.10.051

 Table 2. Rhodium-catalyzed carbonyl allylation with 1

Entry	R	Time (h)	2, Yield ^a (%)
1	4-ClC ₆ H ₄	11	99
2	4-CH ₃ OOCC ₆ H ₄	24	85
3	4-CH ₃ OC ₆ H ₄	22	60
4	$(E)-C_6H_5CH=CH$	23	51
5	C ₆ H ₁₃	17	88
6	$c-C_{6}H_{11}$	18	85


^a Isolated yields.⁹

the conditions of entry 1. The allylation was quite slow at below 30 °C and might be followed by dehydration in refluxing THF.⁸ The allylation was presumed to proceed with 1 equimolar amount of tin(II) chloride to each 1 and benzaldehyde, unlike palladium-catalyzed carbonyl allylations (entry 6).² The balance between the yield and the reaction rate determined optimal conditions; 1 (1.0 mmol), benzaldehyde (1.0 mmol), tin(II) chloride (1.2 mmol), and [RhCl(cod)]₂ (0.02 mmol) in THF (1 mL) and H₂O (0.1 mL) at 50 °C (entry 7). The allylation of various aldehydes with 1 was carried out under the optimal conditions (Eq. 2). Some representative results are summarized in Table 2. Aromatic aldehydes bearing an electron-withdrawing or electron-donating group, aliphatic aldehydes and α , β -unsaturated cinnamaldehyde can be employed in the rhodium-catalyzed allylation.

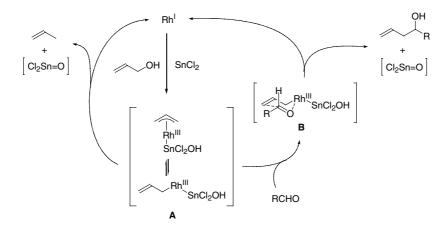
Regioselectivity and diastereoselectivity in the rhodiumcatalyzed carbonyl allylation were investigated with (*E*)-2-buten-1-ol (**3**) and 3-buten-2-ol (**4**) (Eq. 3). The representative results are summarized in Table 3. Since the reactivity of **4** is higher than that of **3**, ease of π -coordination of C–C double bonds to rhodium may determine the reaction rates. The allylation of aromatic aldehydes with either **3** or **4** regioselectively occurred at the allylic position substituted by a methyl group to produce **5b**

Table 3. Rhodium-catalyzed carbonyl allylation with 3 and 4

with slight *anti*-diastereoselectivity (entries 1–3 and 7–9). Regioselectivity in the allylation of aliphatic aldehydes was low (entries 5, 6, and 12).

NMR observation (JEOL A-500) of the reaction of 2propen-1-ol (1, 1.0 mmol) with tin(II) chloride (1.2 mmol) in the presence of a catalytic amount of [RhCl(cod)]₂ (2mol%) in THF-d₈ (0.75mL) at 50°C was carried out with neither any aldehydes nor any H₂O in a sealed tube. In distinction from palladium-catalyzed reaction,² the preparation of not 2-propenyltin intermediate but propene was confirmed: ¹H NMR (500 MHz) δ 1.68 (d, J = 6.5 Hz, 3H), 4.89 (d, J = 10 Hz, 1 H), 4.98 (d, J = 17 Hz, 1 H), 5.72–5.84 (m, 1H); ¹³C NMR (125 MHz) δ 19.5, 115.9, 134.0. The preparation of propene without H₂O suggested that an allylhydridorhodium(III) complex could be prepared from an initial π - or σ -allylrhodium(III) complex such as A that should directly cause carbonyl allylation in the presence of aldehyde via the formation of σ -allylrhodium(III) complex B coordinated by the aldehyde (Scheme 1).¹⁰ The comparison of regioselectivity between 3 and 4 suggested that initial 1-methyl- π -allylrhodium(III) complex could be transformed into σ -2butenylrhodium(III) complex by a coordination of aldehyde and then the 2-butenyl moiety could cause γ -addition to the aldehyde. Since the reactivity of aliphatic aldehydes to the carbonyl allylation is low, γ -adducts **5b** produced initially may react with excess aldehydes to isomerize to α -adducts **5a** via the formation of homoallyloxycarbenium ion intermediates.¹¹

In conclusion, we have established the Barbier-type rhodium(I)-catalyzed carbonyl allylation by allylic alcohols with tin(II) chloride. Noteworthy features are that (1) rhodium(I) complexes function as catalysts for carbonyl


Entry	Allylic alcohol	R	Time (h)	Yield ^a (%)	5a/5b (E/Z, syn/anti) ^b
с	3	C ₆ H ₅	39	93	6/94 (75/25, 42/58)
2 ^c	3	$4-ClC_6H_4$	39	97	9/91 (75/25, 34/66)
3°	3	4-CH ₃ OOCC ₆ H ₄	39	99	10/90 (71/29, 32/68)
4 ^{c,d}	3	(E)-C ₆ H ₅ CH=CH	29	39	0/~100 (, 50/50)
5°	3	$C_{6}H_{13}$	35	78	33/67 (67/33, 62/38)
6 [°]	3	$c - C_6 H_{11}$	63	72	63/37 (77/23, 45/55)
7	4	C_6H_5	20	92	5/95 (65/35, 38/62)
8	4	$4-ClC_6H_4$	20	96	6/94 (65/35, 32/68)
9	4	4-CH ₃ OOCC ₆ H ₄	16	93	8/92 (69/31, 29/71)
10	4	(E)-C ₆ H ₅ CH=CH	21	29	0/~100 (, 50/50)
11	4	$C_{6}H_{13}$	19	95	6/94 (67/33, 70/30)
12	4	$c - C_6 H_{11}$	21	81	27/73 (79/21, 33/67)

^a Yields of mixtures of **5a** and **5b**.⁹

 $^{\rm b}$ The ratios were determined by 500 MHz $^1{\rm H}$ NMR spectroscopy (JEOL A-500).

^c The reaction was carried out with 3 (3.0 mmol) and SnCl₂ (3.0 mmol) in THF (2 mL).

^d The reaction was carried out at 40 °C.

Scheme 1. A plausible catalytic cycle.

allylations by allylic alcohols, (2) a π - or σ -allylrhodium(III) stannate such as **A** seems to be an actual allylating agent though its direct detection by NMR observation has ended in failure, in distinction from palladium-catalyzed allylation,² (3) umpolung of π -allylrhodium complex has been appreciated first, and (4) the amount of tin(II) chloride used as a reducing agent can be cut down by using rhodium(I) complexes as catalysts instead of palladium complexes; 1 equimolar amount of tin(II) chloride to each allylic alcohol and aldehyde displays a sufficient effect.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2004.10.051.

References and notes

- For reviews containing carbonyl allylations by allylic alcohols via umpolung of π-allylpalladium, see: (a) Masuyama, Y. J. Synth. Org. Chem. Jpn. 1992, 50, 202; (b) Masuyama, Y. In Advances in Metal–Organic Chemistry; Liebeskind, L. S., Ed.; JAI Press: Greenwich, CT, 1994; Vol. 3, p 255; (c) Tamaru, Y. In Perspectives in Organopalladium Chemistry for the XXI Century; Tsuji, J., Ed.; Elsevier Science: Switzerland, 1999; p 215; (d) Tamaru, Y. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; p 1917.
- Takahara, J. P.; Masuyama, Y.; Kurusu, Y. J. Am. Chem. Soc. 1992, 114, 2577.
- Kimura, M.; Tomizawa, T.; Horino, Y.; Tanaka, S.; Tamaru, Y. *Tetrahedron Lett.* 2000, 41, 3627.
- (a) Araki, S.; Kamei, T.; Hirashita, T.; Yamamura, H.; Kawai, M. Org. Lett. 2000, 2, 847; (b) Hirashita, T.; Kambe, S.; Araki, S. In Abstracts of 50th Symposium on Organometallic Chemistry, Osaka, Japan; Kinki Chemical Society: Japan, 2003; B103.

- For reactions of π-allylrhodium complexes derived from allylic halides, tosylates, and carbonates, see: (a) Nixon, J. F.; Poland, J. S.; Wilkins, B. J. Organomet. Chem. 1975, 92, 393; (b) Crease, A. E.; Das Gupta, B.; Johnson, M. D.; Moorhouse, S. J. Chem. Soc., Dalton Trans. 1978, 1821; (c) Fryzuk, M. D. Inorg. Chem. 1982, 21, 2134; (d) Periana, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1986, 108, 7346; (e) Tjaden, E. B.; Stryker, J. M. J. Am. Chem. Soc. 1990, 112, 6420; (f) Chin, C. S.; Shin, S. Y.; Lee, C. J. Chem. Soc., Dalton Trans. 1992, 1323; (g) Muraoka, T.; Matsuda, I.; Itoh, K. J. Am. Chem. Soc. 2000, 122, 9552; (h) Tsukada, N.; Sato, T.; Inoue, Y. Chem. Commun. 2001, 237.
- For rhodium-catalyzed enantioselective allylation of arylaldehydes with allylstannane, see: Shi, M.; Lei, G.-X.; Masaki, Y. *Tetrahedron: Asymmetry* 1999, 10, 2071.
- For water-promoted rhodium-catalyzed reactions, see: (a) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052; (b) Oi, S.; Honma, Y.; Inoue, Y. Org. Lett. 2002, 4, 667, and references cited therein.
- 8. The reaction in refluxing THF produced a mixture of nonpolar olefinic compounds of which no structures were determined by instrumental analyses.
- The structures were confirmed by the comparison of spectroscopic values (IR and ¹H NMR) with those of authentic samples. See: (a) Ref. 2; (b) Ito, A.; Kishida, M.; Kurusu, Y.; Masuyama, Y. J. Org. Chem. 2000, 65, 494.
- 10. ¹H NMR observation with a stoichiometric amount of [RhCl(cod)]₂ under the same conditions as the observation with a catalytic amount of [RhCl(cod)]₂ was unsuccessful in detecting an allylrhodium complex; at 25 °C 2-propenol (1) remained intact, while at 50 °C no structure of products other than propene was confirmed. For nucleophilic addition of σ-allylpalladium complexes to aldehydes, see: Nakamura, H.; Iwama, H.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 6641.
- 11. Nokami, J.; Ohga, M.; Nakamoto, H.; Matsubara, T.; Hussain, I.; Kataoka, K. J. Am. Chem. Soc. 2001, 123, 9168, The rhodium-catalyzed carbonyl allylation by 3 with excess benzaldehyde also led to low γ -regioselection; 3 (3 mmol), tin(II) chloride (2 mmol), benzaldehyde (5 mmol), THF (2 mL), H₂O (0.1 mL), 50 °C, 48 h, y 41%, $\alpha/\gamma = 34/66$.